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Abstract
The ultrafast dynamics of photoexcitations at silicon surfaces is investigated
using a surface-sensitive purely optical technique. In the experiments, the
diffracted second harmonic generated by sequences of ultrashort laser pulses
is detected as a function of the time delay between the pulses. It is
demonstrated that this five-wave-mixing technique can be used to measure the
temporal evolution of the optical polarization and the photoexcited populations
at the surface. The experimental results can be reproduced by numerical
solutions of optical Bloch equations. The theoretical analysis allows one to
investigate which dephasing times and relaxation processes are compatible
with experiment. Furthermore, it is outlined how one can describe optical
nonlinearities at surfaces using a microscopic theory within the framework of
semiconductor Bloch equations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Optical techniques have been used successfully to obtain important information on the
dynamics of excited states in atoms, molecules, and condensed matter systems. In particular,
for semiconductor systems time-resolved nonlinear optical spectroscopy using short laser
pulses has provided valuable insight into the temporal evolution of particles and quasi-
particles in non-equilibrium situations [1–4]. Two techniques which are well established
for investigating the coherent dynamics of bulk systems and heterostructures are four-wave
mixing (4WM) and pump–probe spectroscopy. Depending on the particular set-up, these
techniques can be used to monitor the temporal evolution of photoexcited polarizations and
populations [1–4].

The detailed mechanisms of carrier scattering and recombination at surfaces and interfaces
are not only of fundamental interest but their control is also critical for the performance of
modern small scale devices. However, compared to that of bulk and quantum well structures,
the electron dynamics at semiconductor surfaces and interfaces is currently not well understood.
At present, most of the experimental information on the dynamics of electronic excitations at
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surfaces has been obtained by means of time-resolved two-photon photoemission (2PPE). This
powerful technique can be used to determine energy and parallel momentum of intermediate
states, i.e., to study the dynamics of photoexcited populations in k-space [5–16]. However,
2PPE measurements are generally restricted to conducting surfaces in ultrahigh vacuum
environments. In particular, the small escape depth of photoelectrons does not normally
permit one to access buried interfaces. In the case of semiconductor or insulator surfaces band
bending or charging induced by the pump pulses can severely limit the resolution.

In this paper, we describe a surface-sensitive time-resolved technique that is
complementary to the 2PPE one and review recent experimental results which have been
obtained at silicon surfaces. The method combines 4WM with second-harmonic generation
(SHG). SHG is dipole forbidden in the bulk of centrosymmetric materials and has become a
very successful all-optical probe of surfaces and interfaces [17, 18]. The combination of 4WM
and SHG results in a five-wave-mixing (5WM) process. As in 4WM, in the 5WM set-up the
material is excited by a number of laser pulses originating from different directions and the field
emitted in a background-free diffraction direction is detected. However, unlike in ordinary
4WM, the signal measured in 5WM is not detected at a similar frequency to those of the incident
laser beams but instead the intensity of the second-harmonic (SH) radiation is recorded. The
generation of the FWM signal can be viewed as the scattering of SHG from a transient excitation
grating which has been generated by two laser beams. By inducing a transient grating with
ultrashort laser pulses and analysing the diffracted SH intensity the method yields considerably
more information than conventional pump and SHG probe experiments [19, 20]. In particular,
it is possible to access the ultrafast coherent regime at surfaces in a conceptually straightforward
way just like using 4WM in the bulk [21, 22]. As an optical probe 5WM is applicable not only
to most surfaces but also to the interfaces between many different materials.

For a description of the basic physics of the type of nonlinear processes in general and
transient grating techniques such as 4WM and 5WM in particular, let us consider that surface
and the near-surface region of a solid excited by two laser beams with frequencies ωa and ωb

which propagate in the directions ka and kb, respectively. In linear optics, i.e., in first order in
the incident field, part of each of these beams is reflected giving rise to fields of frequencies ωa

and ωb which are emitted in the directions corresponding to the dashed lines in figure 1(a). If
the intensity of the incident radiation is sufficiently high the material gives rise to a nonlinear
response and additional fields appear which are of higher order in the incident beams. From
non-centrosymmetric systems, such as a surface, one gets a finite optical response in second
order in the field. For example, if only a single beam a (b) is incident one can measure SHG, i.e.,
an emitted field that oscillates with 2ωa (2ωb) and propagates in the reflection direction of beam
a (b). For the case where the system is excited by two beams, the nonlinear optical material
will mix the excitations induced by the individual beams which gives rise to sum-frequency
generation (SFG), i.e., a field that oscillates with frequency ωa + ωb and that is emitted in
direction KSF with KSF,x = ka,x + kb,x if the surface is in the x–z plane; see figure 1(a). The
physical origin of these second-order signals is two interactions between the material and the
light field inducing optical polarizations in the material which oscillate with the sum of the
frequencies.

In third order in the incident field, one may generally have two different kinds of optical
nonlinearities. On the one hand, it is possible to additively mix the frequencies of the beams
and to generate fields with frequencies 3ωa , 3ωb, 2ωa + ωb, and ωa + 2ωb that are emitted
in directions 3ka,x , 3kb,x , 2ka,x + kb,x , and ka,x + 2kb,x , respectively. Such third-order sum-
frequency generation processes will, however, not be considered in the following. On the
other hand, third-order optical interactions also give rise to fields with frequencies ωa , ωb,
2ωa −ωb, and −ωa +2ωb that are emitted in directions ka,x , kb,x , 2ka,x −kb,x , and −ka,x +2kb,x ,
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Figure 1. A schematic drawing of wave-mixing
processes at surfaces in reflection geometry; (a) for
two and (b) for three incident laser beams, respectively.
Further explanation is given in the text.

respectively. The latter two fields are self-diffracted 4WM signals which like the SFG propagate
in directions which involve both pulses. One can, for example, write the direction of the last
diffracted signal as kb,x + (kb,x − ka,x). Here, kb,x − ka,x corresponds to a population grating
which is produced in second order by the combined action of beams a and b. This population
grating is modulated spatially according to cos(kGx), with kG = kb,x − ka,x ; see figure 1(a).
The self-diffracted 4WM signal is due to that part of beam b that is scattered off the population
grating into the signal direction kb,x + (kb,x − ka,x). By measuring the intensity of such 4WM
signals as a function of the time delay between beams a and b one may obtain information on
the decay (dephasing) of the material polarization induced by the first beam a.

The 4WM process is not surface specific. On the contrary, 4WM is frequently used
to measure dephasing in bulk semiconductors and semiconductor nanostructures, such as
quantum wells, where the diffracted signal is usually measured in transmission. In a reflection
geometry, as indicated in figure 1(a), the typical probing depth of the 4WM signal is 10–30 nm.
Such experiments are capable of monitoring the carrier dynamics near a surface but do not
achieve true surface specificity [23, 24]. In order to yield specific information about the carrier
dynamics in the topmost 1–3 atomic layers where the electronic structure differs from that of
the bulk, the nonlinear process should be symmetry forbidden in the volume but allowed at the
surface. In the case of centrosymmetric materials this requirement is fulfilled by all processes
that are of even order in the applied field.

In this paper, we focus on analysing a surface specific nonlinear optical response which is of
fourth order in the incident beams. In some of the experimental results, the intensity of the (SH)
radiation is measured in the diffraction direction K(1) with K (1)

x = 3kb,x −ka,x = 2kb,x +(kb,x −
ka,x); see figure 1(a). As a generalization of the 4WM process this signal can be understood
considering that beam b is frequency doubled and scattered off the population grating induced
by beams a and b. As in ordinary 4WM, one can therefore expect that by measuring the
intensity of the diffracted (SH) radiation as a function of the time delay between beams a and
b, one can gain information on the dephasing of the polarization induced by beam a.
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Other experimental results presented in this paper have been obtained using three incident
beams a, b, and c. In this set-up, the intensity of the SH radiation is measured in the diffraction
direction K(1) with K (1)

x = 2kc,x + (kb,x − ka,x); see figure 1(b). Thus, beam c is frequency
doubled and scattered off the population grating induced by beams a and b. As outlined
below, in the three-beam experiments all time delays between the incident pulses can be varied
independently, which allows one to measure not only dephasing of polarizations but also the
dynamics of the population grating.

Results obtained with this technique are presented and discussed for two Si surfaces.
At the Si(111)7 × 7 surface, the self-diffracted SH intensity is measured as a function of
the time delay between the two incident ultrashort laser beams. As discussed in section 4,
the time-delay dependence of this signal reflects the dynamics of the optical polarization
induced by the pump beam [21]. On the basis of the experimental transients alone one cannot
decide whether the observed ultrafast dynamics is due to the decay of individual uncoupled
polarizations, i.e., a T2 process, or whether it is the result of the destructive interference of a
system of coupled polarizations. As demonstrated by numerical solutions of the optical Bloch
equations (OBE) for two model systems, a microscopic modelling of the SHG including all
relevant optical matrix elements and further interaction processes is required, if one wants to
distinguish between these processes.

At the Si(001)-c(4 × 2) surface, the diffracted SH intensity is measured as a function
of the time delays between three incident ultrashort laser beams. As discussed in section 5,
by varying individual time delays between the three pulses one can not only investigate the
dynamics of one-photon transitions but also follow the temporal evolution of populations and
two-photon transitions. With the support of model calculations based on the OBE the measured
ultrafast response as a function of a particular delay can be assigned to the scattering of the
excited electrons within the Ddown surface band on timescales of 50–500 fs [22].

Before presenting and discussing the experimental results on the dynamics of the diffracted
SHG in sections 4 and 5, we summarize in section 3 some information on the experimental
set-up. Our theoretical approaches for analysing the ultrafast coherent nonlinear optical
response of surfaces are discussed in section 2. A microscopic theory which is capable
of describing the dynamics of nonlinear optical surface excitations [25, 26] is presented in
section 2.1. This approach combines ab initio calculations of the band structure performed
including quasiparticle corrections within the GW method [27–29] with the semiconductor
Bloch equations (SBE), which have been used successfully for the analysis of the nonlinear
optical response of bulk semiconductors and semiconductor heterostructures [1–4]. Although
this is, in principle, straightforward, the microscopic approach has not yet been extended and
applied to study surface-sensitive experiments such as SHG, 2PPE, and 5WM ones. Therefore,
in section 2.2 we describe how ultrafast SHG can be analysed using phenomenological sets of
OBE. Solutions of the OBE for a number of model systems are compared to experimental data
on two-beam and three-beam 5WM in sections 4 and 5. This comparison demonstrates that
for a more detailed understanding of the dynamical processes which govern nonlinear optical
experiments at surfaces, analysis with an adequate microscopic theory would be very beneficial.

2. Theory

In our theoretical modelling of the transient optical response of surface excitations we use
two different approaches. In the more phenomenological one—see section 2.2—we make
assumptions about the states which dominate the optical response and calculate the signals by
considering all populations and coherences among these states within the framework of OBE
which were originally developed for analysing the optical response of atomic systems [30].
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In this approach, the energies of the states, their coupling to the light field, and the dephasing
and relaxation times are regarded as parameters which are chosen to get the best agreement with
the experimental data. Such phenomenological descriptions have been used frequently, e.g.,
to analyse optical transients in semiconductor heterostructures; see [31–33] where biexciton
contributions to 4WM have been investigated. This method which is used in sections 4 and 5
to analyse two-beam and three-beam 5WM experiments is described in section 2.2.

As a problem of the phenomenological OBE approach, one should keep in mind that the
fitting parameters are often not uniquely determined, but their validity may depend on the
experimental conditions. As shown, e.g., in [34], a particular set of parameters which is able
to fit differential absorption spectra of a semiconductor heterostructure for resonant excitonic
excitation may fail if one analyses off-resonant configurations, such as in the optical Stark
effect. Consequently, this type of approach does not have general predictive capabilities, since
one may have to adjust parameters if the excitation conditions are varied.

Not only for these reasons it is preferable if one can use a microscopic theory which
relies only on a few well known material parameters to describe the optical response. Such
microscopic approaches have been developed for many semiconductors and semiconductor
heterostructures. The dynamics of optical excitations in such systems can often be described
rather accurately at the level of SBE [4]. These equations go well beyond the OBE by including
many-body interactions which give rise to excitonic resonances,Coulomb correlations, carrier–
carrier and carrier–phonon scattering, and more.

Due to the added complexity, any analysis at the level of SBE is considerable more
complicated than a phenomenological description. However, one reduces in this way the need
for phenomenological parameters and the theory gains predictive capabilities. Ideally, one
can use the microscopic theory to predict signals for many different experimental conditions
without having to adjust any material parameters. An adequate microscopic theory is also
able to describe the decay of the optical polarization and the relevant carrier relaxation
processes [3, 4, 35–39].

So far, time-resolved SHG at surfaces has not been treated on a fully microscopic level.
However, nonlinear optical signals of the excitonic resonance at the Si(111)-(2 × 1) surface
have been computed using the SBE [25, 26]. Here, the dispersions and wavefunctions of the
relevant bands were obtained from density functional theory with quasiparticle correction.
This procedure and a few results are briefly described in section 2.1.

2.1. Semiconductor Bloch equations for the nonlinear optical response of surface excitons

As presented in [25, 26], the following microscopic Hamiltonian can be used to analyse the
exciton resonance of the Si(111)-(2 × 1) surface:

H = H0 + HC + Hl−m. (1)

Here, H0 contains the single-particle energies, i.e., the band structure, and Hl−m accounts for
the coupling between a classical light field and the material system. HC describes the mutual
Coulomb interaction between the photoexcited carriers. This term extends the current analysis
beyond the description presented in section 2.2.

The band structure part of the Hamiltonian is given by

H0 =
∑

k

Ec
kc†

kck +
∑

k

Ev
kd†

−kd−k, (2)

where Ev
k (Ec

k) is the dispersion of the valence (conduction) band, d†
k (c†

k) is a hole (electron)
creation operator, and dk (ck) denotes the corresponding annihilation operator. The subscript
k is the wavevector.
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At the level of the dipole approximation, the light–matter interaction is given by

Hl−m = −E(t) · P = −E(t) ·
[∑

k

(µcd
k c†

kd†
−k + (µcd

k )∗d−kck)

]
, (3)

where µcd
k is the dipole matrix element for the interband transition at wavevector k. In

equation (3), P is the macroscopic optical interband polarization which is defined by the
sum in the square bracket, i.e., by adding up all electron–hole transitions multiplied by the
interband dipole matrix element.

The many-body Coulomb interaction consists of several terms which describe the repulsion
of equally charged carriers, the attraction between electrons and holes, and the exchange term

HC = 1
2

∑
k′,p,q

V cccc
k′+q,p−q,p,k′ c†

k′+qc†
p−qcpck′

+ 1
2

∑
k′,p,q

V dddd
−k′,−p,−p+q,−k′−qd†

k′+qd†
p−qdpdk′

−
∑

k′,p,q

V cddc
k′+q,−p,−p+q,k′ c†

k′+qd†
p−qdpck′

−
∑

k′,p,q

V dcdc
−k′,k′+q,q−p,pc†

k′+qd†
p−qcpdk′, (4)

where V l1l2l3l4
k1k2k3k4

denotes the Coulomb matrix element of four states [25].
In [25, 26], the energy dispersions appearing in equation (2) were taken from the quasi-

particle band structure which has been obtained by ab initio many-body perturbation theory
within the GW method [27–29]. The matrix elements that show up in equations (4) and (3)
have been evaluated using the quasiparticle wavefunctions of the GW method. Thus all terms
entering the Hamiltonian have been determined from microscopic ab initio many-body theory.

To calculate dynamical properties of the photoexcited system, we evaluate the Heisenberg
equations of motion for the relevant microscopic quantities. Starting with the equation of
motion for the interband transition pk = 〈d−kck〉 we then have to face the well known hierarchy
problem, since via the Coulomb interaction the two-point quantity pk couples to four-point
quantities (expectation values containing products of four operators); the four-point quantities
couple to six-point quantities; etc [4]. As in [25, 26], we truncate the many-body hierarchy
by applying the time-dependent Hartree–Fock approximation which leads to a closed set of
equations at the two-point level. This means that besides pk we have to consider the electron
and hole densities nc,k = 〈c†

kck〉 and nv,k = 〈d†
−kd−k〉, respectively [4, 40, 41]. Many-body

correlations beyond the Hartree–Fock treatment, that have been studied, e.g., in [1–4, 42–45],
are neglected here. These correlations are often crucial for configurations in which the
Hartree–Fock contributions vanish, or more generally for any detailed quantitative description
of realistic systems. However, the Hartree–Fock approach still yields qualitatively and almost
quantitatively correct results for the optical Stark effect induced by a strongly detuned linearly
polarized pump. This is due to the fact that the correlation contributions decay with a higher
power of the inverse detuning than the Hartree–Fock terms [44].

The resulting coupled equations of motion for the interband transitions and the electron
and hole populations, i.e., the SBE, are given by

∂

∂ t
pk = − i

h̄
(Ec

k + Ev
k)pk +

i

h̄
(1 − nc,k − nv,k)

[
µcd

k · E(t) +
∑

q

(V cddc
k,q,k,q − V dcdc

q,k,k,q)pq

]

+
i

h̄
pk

∑
q

(V cccc
k,q,k,qnc,q + V dddd

k,q,k,qnv,q) +
∂pk

∂ t

∣∣∣∣
corr

, (5)
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∂

∂ t
nc,k = i

h̄
E(t) · (µcd

k p∗
k − µcd∗

k pk) +
i

h̄
p∗

k

∑
q

(V cddc
k,q,k,q − V dcdc

q,k,k,q)pq

− i

h̄
pk

∑
q

(V cddc
q,k,q,k − V dcdc

k,q,q,k)p∗
q +

∂nc,k

∂ t

∣∣∣∣
corr

, (6)

∂

∂ t
nv,k = i

h̄
E(t) · (µcd

k p∗
k − µcd∗

k pk) +
i

h̄
p∗

k

∑
q

(V cddc
k,q,k,q − V dcdc

q,k,k,q)pq

− i

h̄
pk

∑
q

(V cddc
q,k,q,k − V dcdc

k,q,q,k)p∗
q +

∂nv,k

∂ t

∣∣∣∣
corr

. (7)

Note that compared to the equations presented in [4], the interband exchange interaction (the
last line of equation (4)) has also been considered; it gives rise to the terms proportional
to V dcdc in equations (5)–(7). This term is known to be small for bulk semiconductors
and heterostructures close to the fundamental direct band gap, but may be quantitatively
important for surface excitations. The terms denoted by ∂ ···

∂ t |corr formally represent many-
body correlations beyond the Hartree–Fock approximation, which give rise to, e.g., exciton
populations, biexciton resonances, as well as dephasing and relaxation. In what follows,
these terms are approximated by introducing a T2 time modelling dephasing of the interband
transitions and a T1 time describing energy relaxation and scattering of populations.

As shown in [25], our method is able to reproduce the measured [46] and previously
calculated [29] linear optical spectrum of the Si(111)-(2 × 1) surface. Since all matrix
elements are evaluated using the wavefunctions obtained from ab initio calculations, our
approach includes the strong optical anisotropy which is a result of the formation of Pandey
chains [47]. In the linear spectra, the Coulomb interaction gives rise to a strongly absorbing
exciton resonance which appears approximately 0.25 eV below the band gap [25]; see the solid
curve in figure 2(b).

In the following we present results on pump-induced changes of the absorption spectra of
the Si(111)-(2×1) surface,which were obtained by solving equations (5)–(7) numerically using
429 k-points. The dephasing time T2 is chosen to model a phenomenological homogeneous
broadening with a full width at half-maximum (FWHM) of 50 meV. In order to focus on the
optical Stark effect, we monitor the change of the absorption when exciting the surface with a
pump pulse well below the exciton resonance. To analyse these changes it is advantageous to
consider the differential absorption spectrum, which is defined as [4]

δα(ω) = α(ω)|with pump − α(ω)|without pump. (8)

In the numerical evaluation of the nonlinear absorption we solve equations (5)–(7) for the
pump–probe geometry. The strong pump is treated nonperturbatively, whereas the probe is
assumed to be weak and thus only included in first order [4].

The calculations are performed using a Gaussian-shaped pump pulse with a duration of
250 fs which is tuned to 0.3 eV. The 0.15 eV detuning to the surface exciton is bigger than
the homogeneous linewidth and the spectral width of the pump pulse. The pumping therefore
creates an off-resonant excitation of the system which temporally follows the envelope of the
incident pulse. The spectra displayed in figure 2 are obtained assuming an ultrashort, i.e.,
spectrally white, probe pulse, which arrives at the temporal maximum of the pump. The
predominantly dispersive shape of the differential absorption spectra with positive (negative)
contributions on the high (low) energy side shown in figure 2(a) corresponds to a pump-
intensity-dependent blue shift of the exciton resonance; see figure 2(b). This blue shift
is a consequence of the coupling between the exciton and the pump field which causes a
renormalization of the resonance energy which has its origin in the level repulsion of quantum
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Figure 2. (a) Differential absorption spectra for different intensities of the pump pulse and
(b) corresponding absorption spectra. The relative intensities are I0 (dashed), 4I0 (dash–dotted)
and 9I0 (dash–dot–dotted) respectively. The solid curve shows the linear spectrum. For better
visibility the spectra in (b) are displaced vertically. Taken from [25].

mechanically coupled states. The Stark effect behaviour of the surface exciton resonance is
analogous to that of a non-resonantly excited two level system and also similar to that of
excitons in direct-gap semiconductor heterostructures [4, 42–44].

From figure 2(b), one can see that besides the blue shift with increasing pump intensity
also the oscillator strength of the exciton peak is decreasing. This reduction of the absorption
peak is mainly due to phase-space filling, i.e., the term proportional to (1 − nc,k − nv,k) in
equation (5) [4, 42–44]. Since a pump pulse of higher intensity transiently generates more
carriers in the system, it is clear that due to this term the absorption of the probe beam will
be reduced, i.e., bleaching is observed. Additionally, to the blue shift and bleaching of the
surface exciton, for higher pump intensity weak signatures from energetically higher exciton
states start to show up in the differential absorption spectra; see the dash–dot–dotted curve in
figure 2(a).

The theoretical approach described here and straightforward extensions should also be well
suited for the analysis of other nonlinear and time-resolved optical experiments investigating
surface properties, such as SHG and 2PPE ones. In the future, we plan to go beyond the
time-dependent Hartree–Fock approximation used here and to solve the SBE including many-
body correlations. This will enlarge the applicability of our approach and enable us to study
relaxation and dephasing as well as interactions among surface excitons.
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Figure 3. A schematic drawing of a three-band multi-level system. k labels the states of the
lowest band, e.g., the initially occupied valence band. l and m denote the states of the intermediate
(conduction) band and the highest band, respectively. The frequency of the exciting laser pulses is
assumed to be close to the energy differences between states l and k as well as m and l. The optical
excitation thus creates resonant interband transitions which are proportional the interband dipole
matrix elements µlk and µml . Due to optical nonlinearities such an excitation generates coherences
between the states m and k which oscillate with twice the excitation frequency and therefore give
rise to SHG. The 2ω polarization is proportional to the matrix elements µ̃mk .

2.2. Optical Bloch equations for second-harmonic generation

In SHG, one pulse creates a resonant polarization with frequency ω which is converted by a
second pulse into a resonant polarization with frequency 2ω. Thus, any modelling requires at
least three levels with dipole allowed optical transitions. Considering band to band transitions in
solid-state systems, these levels should in fact be treated as bands which may be approximated
by a densely spaced collection of states. Following these considerations we show in the
following how the time-resolved SHG induced by sequences of ultrashort laser pulses can be
analysed using a general three-band multi-level system; see figure 3.

The Hamiltonian which describes the temporal evolution of the photoexcited system
consists of two terms:

H = H0 + Hl−m. (9)

Here, H0 is the material part which contains the energies of the states considered:

H0 =
∑

k

εkc†
k ck +

∑
l

εl c
†
l cl +

∑
m

εmc†
mcm . (10)

As shown in figure 3, the index k labels the states of the lowest (valence) band, l those of
the intermediate (conduction) band, and m those of the highest band, respectively. c†

i and
ci are creation and annihilation operators for state i . As long as many-body interactions are
neglected one could just as well replace these operators by kets and bras, i.e., work within
single-particle quantum mechanics [4, 48]. Here, however, we use the second-quantization
operators to discuss the OBE in a similar way to the many-body particle systems in section 2.1.
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In equation (9), Hl−m describes the interaction between a classical light field and the
material system. In the dipole approximation it is given by

Hl−m = −E(t) · P = −E(t) ·
[∑

lk

(µlk c†
l ck + µ∗

lk c†
kcl) +

∑
ml

(µml c
†
mcl + µ∗

ml c
†
l cm)

+
∑
mk

(µ̃mkc†
mck + µ̃∗

mkc†
k cm)

]
, (11)

where P, i.e., the term in the square brackets, is the total optical polarization of the material.
Assuming that the transition energies satisfy εl−εk ≈ εm −εl ≈ h̄ω implies that εm−εk ≈ 2h̄ω.
Therefore, the terms of the first two sums that contribute to the polarization oscillate in time,
∝e±iωt , whereas the last term oscillates twice as fast, ∝e±i2ωt . This means that one can
decompose the polarization into two contributions:

P = Pω + P̃2ω, (12)

with

Pω =
∑

lk

(µlk c†
l ck + µ∗

lkc†
k cl) +

∑
ml

(µmlc
†
mcl + µ∗

ml c
†
l cm),

P̃2ω =
∑
mk

(µ̃mkc†
mck + µ̃∗

mkc†
k cm),

(13)

where P̃2ω gives rise to the signals measured in SHG. In order to distinguish in the notation
clearly between the ω and 2ω polarizations, the terms connected to the latter one are denoted
by P̃ and µ̃.

If the incident fields are spectrally centred close to the frequency ω, they will not directly
produce P̃2ω since this contribution is way off resonance. Therefore, one can in this case
concentrate on the resonant part of the light–matter interaction, i.e.,

Hl−m = −E(t) · Pω = −E(t) ·
[∑

lk

(µlkc†
l ck + µ∗

lk c†
k cl) +

∑
ml

(µml c
†
mcl + µ∗

ml c
†
l cm)

]
. (14)

The dynamics of the photoexcited system is determined by the temporal evolution of all possible
populations and coherences of the states considered. The expectation values of the relevant
quantities are defined as

plk = 〈c†
l ck〉, pml = 〈c†

mcl〉, p̃mk = 〈c†
mck〉,

nkk′ = 〈c†
k ck′ 〉, nll′ = 〈c†

l cl′ 〉, and nmm′ = 〈c†
mcm′ 〉.

Here pab and p̃ab are interband coherences between the states a and b, whereas nab are either
intraband coherences if a �= b or populations of the state a if a = b.

In order to obtain dynamical equations for the relevant expectation values, we use the
Heisenberg equation,

∂

∂ t
O = i

h̄
[H,O], (15)

written here for the general operatorO. Inserting the operator combinations introduced above,
evaluating the commutators with the Hamiltonian H , and taking expectation values, we obtain
the following equations:

∂

∂ t
plk = − i

h̄
(εk − εl)plk − i

h̄
E(t) ·

∑
k′

µ∗
lk′ nk′k +

i

h̄
E(t) ·

∑
l′

µ∗
l′knll′

− i

h̄
E(t) ·

∑
m′

µm′l p̃m′k, (16)
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∂

∂ t
pml = − i

h̄
(εl − εm)pml − i

h̄
E(t) ·

∑
l′

µ∗
ml′ nl′l +

i

h̄
E(t) ·

∑
m′

µ∗
m′lnmm′

+
i

h̄
E(t) ·

∑
k′

µlk′ p̃mk′ , (17)

∂

∂ t
p̃mk = − i

h̄
(εk − εm) p̃mk − i

h̄
E(t) ·

∑
l′

µ∗
ml′ pl′k +

i

h̄
E(t) ·

∑
l′

µ∗
l′k pml′ , (18)

∂

∂ t
nkk′ = − i

h̄
(εk′ − εk)nkk′ − i

h̄
E(t) ·

∑
l

µlk plk′ +
i

h̄
E(t) ·

∑
l

µ∗
lk′ p∗

lk, (19)

∂

∂ t
nll′ = − i

h̄
(εl′ − εl)nll′ +

i

h̄
E(t) ·

∑
k

µl′k plk − i

h̄
E(t) ·

∑
k

µ∗
lk p∗

l′k

− i

h̄
E(t) ·

∑
m

µml pml′ +
i

h̄
E(t) ·

∑
m

µ∗
ml′ p∗

ml, (20)

∂

∂ t
nmm′ = − i

h̄
(εm′ − εm)nmm′ +

i

h̄
E(t) ·

∑
l

µm′l pml − i

h̄
E(t) ·

∑
l

µ∗
ml p∗

m′l . (21)

These equations (16)–(21) are the OBE for the three-band multi-level system considered
here. Their solutions for a specific incident field E(t) describe the dynamical evolution of
the photoexcited system. The polarization p̃mk—see equation (18)—yields the 2ω response
which is measured in SHG. The electron populations measured in 2PPE are obtained from
nmm ; see equation (21).

In the experimental investigations of time-resolved SHG which are discussed in sections 4
and 5, the signal is monitored in a diffraction direction and is at least of fourth order in the
incident fields. Since the intensities of the incident fields reach only a few per cent of the
saturation intensity, it is sufficient to analyse the experimental results by keeping only the
lowest order terms (i.e. fourth order) that contribute to SHG. As a starting point, we assume
that before the photoexcitation the system is in its ground state. This means that we start
in zeroth order with p(0)

lk = p(0)
ml = p̃(0)

mk = n(0)
ll′ = n(0)

mm′ = 0 and n(0)
kk′ = δkk′ , i.e., all

coherences and the populations in excited bands vanish and only the valence band states (k-
states) are populated. The resulting fourth-order equations describing time-resolved SHG are
then obtained as

∂

∂ t
p(1)

lk = − i

h̄
(εk − εl)p(1)

lk − i

h̄
E(t) · µ∗

lk, (22)

∂

∂ t
n(2)

ll′ = − i

h̄
(εl′ − εl)n

(2)

ll′ +
i

h̄
E(t) ·

∑
k

µl′k p(1)

lk − i

h̄
E(t) ·

∑
k

µ∗
lk p(1)∗

l′k , (23)

∂

∂ t
n(2)

kk′ = − i

h̄
(εk′ − εk)n

(2)

kk′ − i

h̄
E(t) ·

∑
l

µlk p(1)

lk′ +
i

h̄
E(t) ·

∑
l

µ∗
lk′ p(1)∗

lk , (24)

∂

∂ t
p̃(2)

mk = − i

h̄
(εk − εm) p̃(2)

mk − i

h̄
E(t) ·

∑
l′

µ∗
ml′ p(1)

l′k , (25)

∂

∂ t
p(3)

lk = − i

h̄
(εk − εl)p(3)

lk − i

h̄
E(t) ·

∑
k′

µ∗
lk′ n

(2)
k′k +

i

h̄
E(t) ·

∑
l′

µ∗
l′kn(2)

ll′

− i

h̄
E(t) ·

∑
m′

µm′l p̃(2)

m′k, (26)
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∂

∂ t
p(3)

ml = − i

h̄
(εl − εm)p(3)

ml − i

h̄
E(t) ·

∑
l′

µ∗
ml′ n

(2)
l′l +

i

h̄
E(t) ·

∑
m′

µ∗
m′l n

(2)
mm′

+
i

h̄
E(t) ·

∑
k′

µlk′ p̃(2)

mk′ (27)

∂

∂ t
p̃(4)

mk = − i

h̄
(εk − εm) p̃(4)

mk − i

h̄
E(t) ·

∑
l′

µ∗
ml′ p(3)

l′k +
i

h̄
E(t) ·

∑
l′

µ∗
l′k p(3)

ml′ . (28)

The measured diffracted SHG signal is induced by the 2ω polarization:

P̃(4)

2ω =
∑
mk

(µ̃mk p̃(4)

mk + µ̃∗
mk( p̃(4)

mk)
∗). (29)

In order to describe the excitation with a sequence of incident laser pulses travelling in
different directions ki it is advantageous to perform a spatial Fourier expansion of the coupled
equations [4, 48]. In this case, equations (22)–(28) have to be solved by keeping track of all
interactions with the respective pulses yielding polarizations associated with the directions in
which the signal is monitored.

At a phenomenological level, the decay of the experimentally measured transients can be
described by supplementing equations (22)–(28) with dephasing and relaxation terms, which
introduce decay of the interband and intraband coherences and relaxation of the populations.
This procedure is used in sections 4 and 5 where we model measured SHG transients using
sets of OBE for a few model systems.

3. Experimental set-up

The experiments presented below were conducted with a cavity-dumped Ti:sapphire laser
system [49] that delivered trains of 800 nm pulses at repetition rates from 100 kHz to 2 MHz
with pulse durations of 13 fs and pulse energies up to 50 nJ. A schematic diagram of the three-
beam experimental set-up is displayed in figure 4. The p-polarized laser pulses were split
with an intensity ratio of 3:7 in the two-beam pump–probe set-up, and of 2:1:1 in the three-
beam geometry1. The beams were recombined on the sample at angles of 22◦ and 24◦ (two
beams), and 19◦, 22◦, and 27◦ (three beams) with respect to the surface normal. The plane of
incidence was normal to the [21̄1̄] direction of Si(111) and normal to [110] for Si(001). Typical
excitation fluences were 100 µJ cm−2, which is only about 2% of the saturation intensity for
the transitions involved. The detection system was optimized for the simultaneous monitoring
of two beams of 2ω radiation with wavelength around 400 nm at a rate ranging from 0.1
to 106 photons per second. The 5WM signal was detected with a photomultiplier without
polarization selection. The relative time delays between the pulses were determined from the
sum-frequency response of beams a and b and beams b and c which is symmetric with respect
to delay times.

The experiments were carried out in an ultrahigh vacuum (UHV) chamber with a base
pressure of 2 × 10−11 mbar. The base material used for the samples was single-crystal n-type
phosphorus-doped silicon (Virginia Semiconductor) with specified resistivities between 6 and
12 � cm corresponding to a P donor density ∼5 × 1014 cm−3. The wafers with a thickness of
0.6 mm were single-side polished and oriented to within ±0.25◦ along the principal [111] or
[001] axis. The samples were mounted on a liquid-nitrogen-cooled holder and could be heated
resistively. The surfaces were prepared with single heating cycles peaking at ∼1300 K. The

1 The effect of the polarization of the incident beams was studied systematically only in the case of the Si(111)
two-beam set-up. The 5WM signal dropped by more than a factor of 20 and was below our detection limit when two
orthogonally polarized input beams were used.
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Figure 4. A schematic representation of the optical set-up for the SH diffraction experiment. After
compression by two prisms, the pulses are split into two or three beams, which are focused onto
the silicon surface in UHV. From the emerging bunch of reflected and diffracted beams from the
surface, two SH rays are detected simultaneously and processed by a two-channel photon counter.
Taken from [50].

quality of the surfaces was regularly inspected using LEED and Auger electron spectroscopy
(AES). They showed sharp Si(001)-c(4 × 2) or Si(111)-(7 × 7) diffraction patterns and no
traces of contamination. All measurements presented below were carried out at 80 K sample
temperature.

4. Two-pulse second-harmonic generation at Si(111)7 × 7

Using laser pulses with photon energies of 1.55 eV one can excite, at the Si(111)7×7 surface,
electrons from bulk valence bands near �̄ into the dangling-bond derived surface band U1

which lies above the Fermi level in this region of k-space. The dynamics of such excited
electron populations �̄ in the U1 surface band has been investigated in [21] by monitoring
the time-delay dependence of the SHG measured in a pump–probe experiment with pulse
durations of 120 fs. It was found that the SHG intensity is decreased when the pump and
probe arrive at the surface with no time delay. With increasing time delay, the SHG intensity
recovers on a timescale of 215 fs which reflects the time for scattering of the excited electrons
out of the optically coupled regions of k-space. In the language of the OBE one would model
this process by a T1 time which diminishes the electron population in the states photoexcited
by the pump.

Further experiments presented in [21] showed results on the SFG and the self-diffracted
SHG excited by two ultrashort pulses with duration shorter than 14 fs. The measured SFG
cross-correlation is shown in figure 5(a). In the language of nonlinear optics the SFG is a
second-order process which is described by

P(2)
s (KSF, 2ω) = χ(2)

s : Ea(ka, ω)Eb(kb, ω), (30)

with

KSF,x = kb,x + ka,x, (31)



S234 T Meier et al

– 40 – 20 0 20 40

0

1.0

2.0

3.0

4.0
(a)

23 fs

Time Delay (fs)
– 40 – 20 0 20 40

Time Delay (fs)

S
H

 I
nt

en
si

ty
 (

re
l. 

un
its

) 
  

×103

χ(2)
|0〉

|1〉

kb

ka

K(1)

KSF

0.0

0.2

0.4

0.6

0.8

1.0
(b)

19 fs

τ = 5.3 fs
χ(4)

|0〉

|1〉

kb

ka

KSF
K(1)

Figure 5. (a) SFG cross-correlation from two beams incident on a clean Si(111)7 × 7 surface
under 22◦ and 24◦ . The solid line through the data indicates the calculated response of sech2

pulses with a FWHM of less than 14 fs. (b) Self-diffracted SHG from two beams incident on a
clean Si(111)7 × 7 surface under 22◦ and 24◦ . The dashed line through the data indicates the
calculated response of sech2 pulses with a FWHM of less than 14 fs. The shift and asymmetric
broadening of the diffracted signal corresponds to a decay time of 5.2 fs. Taken from [21].

where ka and kb denote the directions of the two laser beams which are incident in the x–z
plane (x denotes a direction parallel and z the direction perpendicular to the surface) and χ

(2)
s

is the second-order nonlinear optical susceptibility. In centrosymmetric bulk materials this
process is dipole forbidden. Therefore, the measured SFG is predominantly generated at the
surface which is denoted by the subscript s in equation (30).

Since the SFG does not change on interchanging the two incident pulses, the measured
transient in figure 5(a) is symmetric with respect to zero time delay. For both positive and
negative time delays, it falls off rapidly showing a FWHM of only 23 fs. For incident pulses
with an ideal sech2 shape this width corresponds to a pulse duration of less than 14 fs on the
sample.

The measured transient self-diffracted SHG is displayed in figure 5(b), where a positive
time delay corresponds to a situation where pulse a is incident before pulse b. This process is
described by

P(4)
s (K(+1)

d , 2ω) = χ(4)
s : E∗

a(ka, ω)E3
b(kb, ω), (32)

with

K (+1)
d,x = 3kb,x − ka,x = 2kb,x + (kb,x − ka,x), (33)

where χ
(4)
s is the fourth-order nonlinear optical susceptibility. One may view this 5WM process

as SHG generated from a transient grating. In this scenario, the two time-delayed beams a
and b produce a population grating at the surface which gives rise to a spatial modulation of
the second-order nonlinear susceptibility, 	χ

(2)
s (x) = 	χ

(2)
s,0 cos(kGx), with kG = kb,x − ka,x .

A fraction of beam b then acts as a probe beam and is frequency doubled and Bragg scattered
from the grating into the direction K(+1)

d . The detected SHG signal thus probes the modulation
depth 	χ

(2)

s,0 of the grating and therefore is proportional to the amount of polarization induced
by beam a which is present when the time-delayed beam b arrives. Therefore, by measuring
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the time-delay dependence of the SHG one obtains information on the decay of the polarization
induced by beam a.

The measured SHG in figure 5(b) shows a quick rise, a maximum at a time delay of about
5 fs, and then decays very rapidly with increasing time delay. This transient behaviour implies
that the polarization generated by pulse a has to decay very rapidly on a timescale comparable
to the duration of the incident ultrashort laser pulses.

The fluence dependence of the SFG and the SHG signals—see figure 6—verifies the
nonlinear nature of the measurements. In agreement with lowest order perturbation theory
with respect to the light–matter coupling, the SFG signal scales with the square of the fluence
and the SHG signal with the fourth power of the fluence. Hence, we can be sure that the
experiments have been performed with pulse intensities which are much smaller than the
saturation intensities.

The simplest modelling of the measured SHG transients shown in figure 5(b) would be
done considering only a single three-level system. However, since the experiments have been
performed on a solid-state system which is characterized by a band structure of the surface
and bulk bands, one has to include a distribution of the transition energies. This is particularly
important since the ultrashort laser pulses cover a very wide spectrum of transition energies
and we do not expect any discrete (e.g., excitonic) resonances to dominate in the signals. The
presence of different transition energies can, however, be due to different physical processes
and thus can be modelled in different ways. In the following, we concentrate on the transition
from the initially occupied valence states to the intermediate band which are induced by pulse
a, since this polarization is the most important quantity determining measured SHG transients.
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(a) (b)

Figure 7. Model systems used for describing the time-resolved SHG. (a) The inhomogeneous
model describing the dispersion of the valence band in k-space. (b) The homogeneous model
which considers a continuum of projected bulk valence band states for a particular k-state.

Due to the dispersion of band-to-band transitions and the fact that the optical transitions are
diagonal in k-space, one could model the SHG by considering an inhomogeneous distribution
of the three-level system, where each of the systems characterizes a particular point in k-space.
Such an ensemble of systems—see figure 7(a)—is referred to as the inhomogeneous model.
As the other extreme, one could think that the response is mainly due to a particular k-state
and that at this state the folded bulk valence bands provide a continuum of energies which are
optically coupled to the same excited state. This system—see figure 7(b)—is referred to as the
homogeneous model. In reality, one probably has to take into account both homogeneous and
inhomogeneous broadening where their relative importance is determined by the dependences
on energy and k of the matrix elements which govern the optical response. Since at present no
such complete model exists, we analyse here the two extreme cases in order to highlight their
principle differences when applied to time-resolved SHG.

The calculated self-diffracted SHG for the inhomogeneous and the homogeneous models
are shown in figure 8. For both models, the widths of the continuum in the valence bands were
chosen to exceed the spectral width of the incident pulses and the dipole matrix elements were
kept constant. Analysing 4WM for the inhomogeneous model one would get a photon echo in
the time-resolved signal. Therefore, without dephasing, i.e., for T2 = ∞, the time-integrated
4WM signal would rise with increasing time delay and reach its maximum when the delay
equals the temporal width of the photon echo. Note that for our model, the temporal width
of the echo is determined by the duration of the laser pulses, since the continuum considered
is very broad. This behaviour of the 4WM qualitatively explains the results obtained for the
5WM process, i.e., the diffracted SHG intensity. For T2 = ∞—see the dashed curve in
figure 8(a)—the signal rises with increasing time delay and reaches its maximum at a delay
of about 50 fs. This maximum at a time delay bigger than the duration of the pulses is a
consequence of the nonlinear convolution of the incident pulses which results in a temporal
broadening of the signal. For shorter dephasing times, the maxima of the SHG signal shift to
smaller delays; see the dotted and solid curves in figure 8(a). Comparing the calculation to the
experimental data, figure 5(b), we would conclude from this model that the dephasing time
has to be of the order of 10 fs.

However, if one alternatively uses the homogeneous model, one arrives at a completely
different picture. As shown in figure 8(b), within this model the SHG transients are basically
independent of the dephasing time considered. This is due to the fact that the decay of the
interband polarization in such a model, where the transitions induced by pulse a share a
common state, is irreversible [48, 51]. Thus, in this case we do not get a photon echo but just
a rapid decay which for a broad continuum of transitions occurs on a timescale comparable to
the duration of the laser pulses. Therefore, if the homogeneous model were to be the correct
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Figure 8. Calculated self-diffracted SHG induced
by two laser beams. (a) Numerical results
obtained for the inhomogeneous model using
T2 = 3 fs (solid), 100 fs (dotted), and ∞
(dashed). (b) Numerical results obtained for the
homogeneous model using T2 = 3 fs (solid) and
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description, the measured SHG transients would not allow for any conclusions on the dephasing
time, since the internal dynamics of the system would be responsible for the rapid decay of
the signal.

These two extreme examples highlight problems one may face when describing optical
transients at the level of OBE with phenomenological inputs. If one does not have beforehand
information about the nature of the underlying states and their most important optical
transitions, it may often not be possible to give a conclusive description of experimental results
since very different models can lead to very similar signatures. This demonstrates furthermore
that it is highly desirable to analyse such nonlinear optical experiments using microscopic
theory, such as extensions of the SBE presented in section 2.1.

5. Three-pulse second-harmonic generation at Si(001)-c(4 × 2)

In this section we discuss results on time-resolved SHG obtained by exciting the Si(001)-
c(4 × 2) surface with three ultrashort laser pulses of frequency ω; see [22]. The measured
diffracted 2ω radiation is generated by nonlinear optical interactions at the Si(001)-c(4 × 2)
surface. The three beams with wavevectors ka , kb, and kc are incident in the x–z plane. The
SHG signal is detected in a reflection geometry. To lowest order in the fields, the SHG source
is the fourth-order polarization

P(4)
s (K(+1)

d , 2ω) = χ(4)
s : E∗

a(ka, ω)Eb(kb, ω)E2
c(kc, ω), (34)

with

K (+1)
d,x = 2kc,x + kb,x − ka,x, (35)

where χ
(4)
s is the fourth-order nonlinear optical susceptibility.



S238 T Meier et al

Considering that pulse c arrives last, one may view the 5WM process described by
equation (34) as SHG generated from a transient grating. In this scenario, the two pump
beams a and b produce a population grating. The time-delayed probe beam c is frequency
doubled and Bragg scattered from the grating into the direction K(+1)

d . The detected 2ω signal
thus probes the modulation depth 	χ

(2)
s,0 of the grating as a function of the delay of beam c.

The SHG signal therefore contains information about carrier relaxation and carrier diffusion
at the surface. This simplified picture of the 5WM process is valid only for delays of beam c
that are considerably longer than the durations of the exciting laser pulses and the dephasing
times of the system. In general, several terms arising from the coherent interaction of the three
beams contribute to the 5WM signal.

By varying the time ordering of the pulses the versatile three-beam technique can also
be used to study the temporal evolution of photoexcited one- and two-photon coherences.
For example, when the delay between beams a and b is varied, the SHG signal contains
information about the decay of optical polarizations, as is the case for the self-diffracted SHG
signal analysed in section 4. Information on the dynamics of higher order optical coherences
can be gained if beam c arrives first, which generates in second order a 2ω polarization.
By varying the delays with respect to beams a and b one can measure the dynamics of this
two-photon polarization.

Representative data showing the dependence of the SHG intensity as a function of the
delay time τab between the (pump) beams a and b are shown in figure 9(b). The different
curves correspond to a different delay time τbc of (probe) beam c with respect to beam b. The
delay times are defined with respect to the time of incidence of pulse b; i.e., a pulse sequence
a, b, c corresponds to τab < 0 and τbc > 0. So the definition of the sign of the delay is opposite
to that used in figure 5(b).

As shown in figure 9(b), the 2ω response is for all delays τbc sharply peaked close to
τab = 0 and is an almost symmetric function of τab. The FWHM of 23 fs is similar to that
of the SFG induced by beams a and b. The FWHM of the SFG is determined by the cross-
correlation of the two laser beams and the decay of the surface polarization generated. As a
function of τab the results of the three-beam SHG experiment are similar to those for the self-
diffraction two-beam SHG data reported for Si(111)-7 × 7 [21]; see figure 5(b). As discussed
in section 4, it is therefore not possible to decide from the experimental data alone whether
the fast decay is a result of dephasing due to rapid scattering processes or has its origin in the
destructive interference of a continuum of transition frequencies. In any case, the rapid decay
of the SHG intensity as a function of τab considerably simplifies the analysis of the temporal
response of the 5WM signal as a function of delay time τbc. For τbc > 38 fs (sum of pulse
width and sum-frequency signal) it is possible to interpret the measured response as SHG from
a transient population grating as described above.

We concentrate in the following on the variation of the peak intensity with the delay of the
probe beam c. This dynamics is displayed in figure 10 where the peak maxima from the data
of figure 9(b) and from similar measurements are plotted as a function of τbc. Surprisingly,
in this case the intensity does not show just a simple rise followed by a subsequent decay,
but instead the measured transient peaks at two temporal positions. After showing a sharp
maximum around τbc = 0, the intensity goes through a minimum, then reaches its absolute
maximum at a delay of ∼100 fs, before it subsequently decays to zero on a timescale of 500 fs.

Whereas the sharp maximum at τbc = 0 can be understood simply as the result of the
coherent interaction of all three beams, the occurrence of a maximum, long after the two
pump beams a and b are over, is unexpected. In a usual transient grating experiment, one
expects the grating modulation to reach its maximum immediately after the incidence of the
excitation pulses a and b. Thus, one would expect the maximum intensity to be observed for
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Figure 9. (a) The geometry of the 5WM experiment using three temporally delayed incident beams
a, b, and c. The SH intensity is measured in the reflected direction K(+1)

d . (b) Time-integrated SH
intensity as a function of τab for varying τbc. The thick solid curves are the measured transients
and the thin curves display the results of the model calculations. Taken from [22].

small positive τbc which is close to the duration of the pulses. Considering a short population
relaxation time T1, the temporal position of this maximum should be shifted even closer to zero
delay since in this case excitation and decay compete with each other. A shift in the opposite
direction, i.e., towards longer positive delays, as observed in figure 10, can only be understood
by considering some kind of process of transfer between the generation of the grating and the
probe of its properties.

Since due to the overwhelming complexity of the interaction processes among surface and
bulk states a fully microscopic description for the time-resolved SHG at surfaces is currently
not available, we use a description which is based on the OBE and phenomenologically
incorporates known facts for the system to analyse the 5WM experiment. With the photon
energies of 1.55 eV delivered by our laser system, SHG from silicon is resonantly enhanced by
dangling-bond derived surface states (1ω resonance) and by surface-distorted bulk states (2ω

resonance near the E1 transition of bulk Si) [52–55]. In the case of Si(001), the dangling bonds
are the Dup and Ddown states of the asymmetric dimers. Considering the band structure—see
figure 11(a)—one finds that resonant optical transitions from Dup to Ddown are possible between
the �̄ and J̄′ points of the surface Brillouin zone. Since in this region of k-space the electrons
are photoexcited well above the bottom of the Ddown band, it is reasonable to assume that they
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Figure 10. SH peak intensity, i.e., the maximum of the 5WM signal for varying τab but fixed τbc,
as a function of τbc. The circles (with error bars) are the experimental results and the solid curve
displays the transient obtained from the model calculations. The dashed curve denotes the long
time limit, where the intensity is dominated by T1 processes and thus proportional to (exp(−t/T1))

2

with T1 = 500 fs. The dotted curve displays the population at the lower one-photon resonance |1′〉
of system S′ (see figure 11) induced by a transfer time of Ttrans = 50 fs neglecting T1 processes.
Taken from [22].

Figure 11. (a) The band structure of Si(001)-c(4 × 2), after [58]. (b) The two coupled three-level
systems S and S′ used in the numerical model calculations. Electronic relaxation from |1〉 and |1′〉
is modelled by a transfer time Ttrans. The energy differences between |0〉 and |2〉 and |0′〉 and |2′〉
both coincide with twice the frequency of the incident beams. Taken from [22].

will rapidly scatter towards lower energies and probably accumulate close to �̄ and/or J̄′. This
rapid relaxation process could be due to the emission of phonons associated with a flipping of
the excited dimers and may be accelerated by simultaneous Coulomb scattering processes.

Whereas in a standard 4WM experiment the excitation grating generated by beams a and
b would be probed by beam c at the same position in k-space, this is generally not the case in
a 5WM experiment. This difference is due to the fact that the generation of the diffracted SH
signal involves optical transitions at both ω and 2ω induced by the probe, which are governed
by different matrix elements to those of the pump. In particular, in a situation where 2ω is close
to a resonance, as is the case in our experiment, it is possible to monitor the excitation grating
at energies and momenta substantially different from those initially created by the two pump
beams. Consequently, the temporal response of the diffracted signal reflects scattering both in
and out of the optically probed region in k-space. We would like to emphasize that, as matrix
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elements involving surface transitions are generally not well known, it does not matter for our
interpretation whether the electrons created in the Ddown band originate from the Dup band or
from bulk-like states. Furthermore, we would like to mention that the proposed excitation
and scattering process is in agreement with 2PPE measurements which have recently been
performed by Weinelt et al [16].

To substantiate the interpretation given above, we numerically solve OBE for a model
consisting of two coupled three-level systems S and S′; see figure 11(b). As outlined in
section 2.2, the 5WM signal is calculated up to fourth order in the fields by numerically solving
the OBE for the relevant interband and intraband coherences and the populations taking into
account the finite duration of the exciting pulses. Dephasing and population relaxation are
described phenomenologically using time constants T2 and T1, respectively.

The calculated 5WM signals as a function of τab are shown by the thin curves in figure 9(b).
If τbc is not too small, i.e., when the 5WM signal can be interpreted as a diffraction off a
transient grating, the numerical results concerning the dependence on both τab and τbc are in
good agreement with experiment. For very small |τbc| of the order of a few pulse widths, the
numerical transients are shifted as a function of τab relative to experiment. The origin of this
temporal shift could be that our simple model does not include the continuum of off-resonant
transitions, three-photon resonances, and many-body interactions among the photoexcitations,
which are known to lead to signals for positive τab in 4WM experiments [56]. It should be
noted that the sign of τ in [56] is reversed with respect to our definition of τab. Since the
main experimental feature that we want to investigate here is the delayed maximum observed
in figure 10, the temporal shift between solid curves in figure 9(b) for very small |τbc| is of no
importance for the present analysis.

By calculating the SHG intensity as a function of τbc for ensembles of uncoupled three-level
systems, i.e., an inhomogeneous model, it is not possible to reproduce the delayed maximum
of the experimental data of figure 10. As argued above, the numerical calculations (not shown
in the figure) show that for this case the maximum of the SHG intensity appears always at small
positive τbc. The delayed maximum can, however, be reproduced by considering a coupling
between the two three-level systems S and S′ by a transfer process which models population
relaxation from level |1〉 to level |1′〉. In more detail, we assume that for positive τbc, beams
a and b resonantly create a strong population grating at |1〉 and a much weaker off-resonant
excitation at |1′〉. With increasing time, the population of |1〉 is relaxing to |1′〉. This process is
modelled by a transfer time of Ttrans = 50 fs. For bulk silicon, 4WM experiments with 100 fs
beams have revealed ultrafast dynamics on a timescale of ∼10 fs up to several 100 fs [23, 57].
2PPE experiments with 150 fs beams showed extremely rapid thermalization and cooling of
photoexcited electrons (<100 fs) [59, 60]. Therefore, the rapid timescale observed here with
our short 13 fs beams does not seem to be unreasonable. The experimental observation that
the delayed maximum is bigger than the initial one is reproduced by enhancing the transition
matrix elements for the system S′ in comparison to S in figure 11(b). This reduced model can
be viewed as representing the most important transitions in the band structure. The system S
corresponds to the value k‖,1 between �̄ and J̄′. In this region resonant single-photon transitions
to the Ddown band, which is represented by |1〉, are expected. The system S′ is situated at k‖,2,
closer to the minimum of the Ddown band, e.g., closer to the �̄ point.

The results of our numerical calculations concerning the dependence of the SHG peak
intensity as a function of τbc are shown by the solid curve in figure 10. Clearly, the experimental
data are reproduced very well by the model considered. The long time limit is dominated by
T1 processes; see the dashed curve in figure 10. The slow rise of the signal has its origin in
the population transfer to |1′〉; see the dotted curve. Qualitatively, the delayed maximum can
be described by considering the product of the dashed and dotted curves.
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In addition to the rapid scattering processes in the Ddown band discussed here, recent 2PPE
studies by Tanaka and Tanimura [15] and by Weinelt et al [16] have reported a long lived
component of the Ddown population at the �̄ point. It has been suggested that this component
arises from scattering of bulk electrons from the conduction band minimum into the Ddown

band and that the decay time of ∼200 ps reflects the lifetime of the bulk electrons [16]. In
our experiment we observe neither a signature of this bulk–surface scattering process nor one
of the faster 5 ps decay of the population at the �̄ point of the Ddown band which has been
attributed to exciton formation [16].

This difference between the 2PPE and 5WM experiments is consistent with the
microscopic interpretation of the 5WM processes given above. The 2PPE experiments used
a pump photon energy similar to the fundamental photon energy of our 5WM set-up. Thus
the two experiments excite a similar region of the surface Brillouin zone. However, the 5WM
signal from Si(001) originates predominantly from a region in k-space that is close to the point
where the Ddown band is resonantly excited (compare figure 11) whereas the long lived 2PPE
signals originate from the �̄ point. According to Weinelt et al [16], electrons at k‖ = 0 have
already lost 350 meV compared to their energy at k‖ = 0.11 Å−1 where a resonant excitation
between the Dup and Ddown states is possible. It is very unlikely that any region in k-space
with such a large detuning of the |0′〉 → |1′〉 transition can significantly contribute to the
5WM response when near-resonant transitions are possible for other values of k. Under the
present conditions, the 5WM experiment thus selectively probes intra-band scattering close to
the region of excitation and it is not sensitive to electron dynamics at the band minimum.

As a concluding remark concerning the comparison of time-resolved 5WM with other
ultrafast probes that have been used to investigate electron dynamics at silicon surfaces and
interfaces, we would like to stress its interface specificity as an even-order nonlinear optical
process. Resonant excitation of surface states with a photon energy below the direct band gap
of the bulk will generally only lead to a much weaker density of excited carriers in the bulk than
at the surface. These bulk carriers can nevertheless contribute significantly to the response of
third-order optical techniques such as conventional transient grating experiments [23, 24] or
pump–probe reflectivity experiments [61] with a probing depth of λ/4πn ∼ 200 Å, i.e., ∼100
atomic layers. Moderate bulk carrier densities will, however, not influence the 5WM response
since its sensitivity is based on a symmetry break at the surface which occurs in the topmost
1–3 atomic layers. On an oxidized surface, e.g., pump pulses of a fluence similar to the one
used in the present experiment give rise to transient reflectivity changes with a recovery time of
the order of 100 ps [61]. When we quench the surface dangling bonds via oxygen adsorption
the 5WM signal vanishes below the detection limit [50].

In 2PPE experiments, the excitation of long lived bulk states can severely influence the
spectra in an indirect way, by changing the band bending at the surface and thus shifting
the surface bands with respect to the Fermi level. Depending on the doping of the sample,
the repetition rate of the laser, the concentration and transport characteristics of the bulk
carriers, and other effects, this shift of the reference level for photoelectron spectroscopy can
lead to shifts and/or broadening of 2PPE peaks [6]. As an all-optical technique the 5WM
approach does not suffer from such photovoltage-induced effects. The technique can therefore
be applied equally well to surfaces and interfaces with flat bands and significant band bending.
Furthermore, it is also possible to apply it under conditions of high excitation densities where
photoelectron spectra suffer from space charge effects [62].

6. Summary

In summary, experimental results on the temporal dynamics of the diffracted second-harmonic
intensity at silicon surfaces have been presented and discussed. At the Si(111)7 × 7 surface,
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the self-diffracted signal induced by two ultrashort laser beams shows a rapid decay on a
timescale comparable to the duration of the incident pulses of less than 15 fs. It has been
demonstrated by numerical solutions of the optical Bloch equations for model systems that
it cannot be decided from the experimental data alone whether this dynamics is due to the
decay of individual uncoupled polarizations, i.e., a T2 process, or is the result of the destructive
interference of a system of coupled polarizations. To distinguish these processes, a microscopic
modelling of the second-harmonic generation including all optical matrix elements and further
relevant interaction processes is required.

The Si(001)c(4 × 2) surface has been studied using a five-wave-mixing set-up which
measures the diffracted second-harmonic intensity induced by three femtosecond laser beams.
It has been demonstrated that by varying individual time delays between the pulses, this
technique can not only be used to investigate the dynamics of one-photon transitions, but
also allows one to monitor the temporal evolution of populations. With the support of model
calculations based on optical Bloch equations, the observed ultrafast response as a function
of a particular delay can be assigned to scattering of the excited electrons within the Ddown

surface band on timescales of 50–500 fs.
In the future, similar five-wave-mixing experiments using tunable laser pulses will allow us

to investigate the processes discussed here in more detail, analyse the ultrafast optically induced
dynamics at other surfaces, and access the largely unexplored electron dynamics of buried
semiconductor interfaces. Theoretically, more microscopic approaches will be developed to
gain a better quantitative understanding of the material dynamics which is responsible for the
dynamics of nonlinear optical excitations at surfaces and interfaces.
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[28] Godby R W, Schlüter M and Sham L J 1986 Phys. Rev. Lett. 56 2415
[29] Rohlfing M and Louie S G 1999 Phys. Rev. Lett. 83 856
[30] Allen L and Eberly J H 1975 Optical Resonance and Two-Level Atoms (New York: Wiley)
[31] Mayer E J et al 1994 Phys. Rev. B 50 14730
[32] Mayer E J et al 1995 Phys. Rev. B 51 10909
[33] Bott K et al 1996 J. Opt. Soc. Am. B 13 1026
[34] Reichelt M, Sieh C, Meier T and Koch S W 2000 Phys. Status Solidi b 221 249
[35] Stroucken T, Knorr A, Thomas P and Koch S W 1996 Phys. Rev. B 53 2026
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